Nuprl Lemma : weak-connex_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (weak-connex(T; x,y.R[x;y]) ∈ ℙ)


Proof




Definitions occuring in Statement :  weak-connex: weak-connex(T; x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T weak-connex: weak-connex(T; x,y.R[x; y]) so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] prop:
Lemmas referenced :  uall_wf squash_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (weak-connex(T;  x,y.R[x;y])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-04_16_10
Last ObjectModification: 2015_12_26-AM-11_29_16

Theory : rel_1


Home Index