Nuprl Lemma : predicate_implies_reflexivity
∀[T:Type]. ∀[P:T ⟶ ℙ]. P
⇒ P
Proof
Definitions occuring in Statement :
predicate_implies: P1
⇒ P2
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
predicate_implies: P1
⇒ P2
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
hypothesis,
applyEquality,
hypothesisEquality,
functionEquality,
cumulativity,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}]. P {}\mRightarrow{} P
Date html generated:
2016_05_14-AM-06_05_51
Last ObjectModification:
2015_12_26-AM-11_32_19
Theory : relations
Home
Index