Nuprl Lemma : rel_implies_or_right
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ]. R2 => R1 ∨ R2
Proof
Definitions occuring in Statement :
rel_or: R1 ∨ R2
,
rel_implies: R1 => R2
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
rel_or: R1 ∨ R2
,
rel_implies: R1 => R2
,
infix_ap: x f y
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
or: P ∨ Q
,
member: t ∈ T
,
prop: ℙ
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
Error :isect_memberFormation_alt,
lambdaFormation,
cut,
hypothesis,
inrFormation,
applyEquality,
hypothesisEquality,
Error :inhabitedIsType,
Error :functionIsType,
Error :universeIsType,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[R1,R2:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. R2 => R1 \mvee{} R2
Date html generated:
2019_06_20-PM-00_31_07
Last ObjectModification:
2018_09_26-PM-00_43_08
Theory : relations
Home
Index