Nuprl Lemma : rel_rel_star

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  ((x y)  (x (R^*) y))


Proof




Definitions occuring in Statement :  rel_star: R^* uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: infix_ap: y rel_star: R^* exists: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  bfalse: ff btrue: tt
Lemmas referenced :  false_wf le_wf rel_exp_wf and_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation applyEquality hypothesisEquality functionEquality cumulativity universeEquality sqequalRule dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    ((x  R  y)  {}\mRightarrow{}  (x  rel\_star(T;  R)  y))



Date html generated: 2016_05_14-AM-06_04_04
Last ObjectModification: 2015_12_26-AM-11_33_28

Theory : relations


Home Index