Nuprl Lemma : binrel_eqv_wf
∀[T:Type]. ∀[E,E':T ⟶ T ⟶ ℙ]. (E <≡>{T} E' ∈ ℙ)
Proof
Definitions occuring in Statement :
binrel_eqv: E <≡>{T} E'
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
binrel_eqv: E <≡>{T} E'
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
Lemmas referenced :
all_wf,
iff_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
applyEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
cumulativity,
universeEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[T:Type]. \mforall{}[E,E':T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. (E <\mequiv{}>\{T\} E' \mmember{} \mBbbP{})
Date html generated:
2016_05_14-PM-03_54_37
Last ObjectModification:
2015_12_26-PM-06_56_08
Theory : relations2
Home
Index