Nuprl Lemma : binrel_le_weakening
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((R <≡>{T} R') ⇒ (R ≡>{T} R'))
Proof
Definitions occuring in Statement : 
binrel_le: E ≡>{T} E', 
binrel_eqv: E <≡>{T} E', 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
binrel_le: E ≡>{T} E', 
binrel_eqv: E <≡>{T} E', 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  <\mequiv{}>\{T\}  R')  {}\mRightarrow{}  (R  \mequiv{}>\{T\}  R'))
Date html generated:
2016_05_14-PM-03_54_56
Last ObjectModification:
2015_12_26-PM-06_55_49
Theory : relations2
Home
Index