Nuprl Definition : least-equiv

least-equiv(A;R) ==  λx,y. ((R y) ∨ (R x))^*



Definitions occuring in Statement :  transitive-reflexive-closure: R^* or: P ∨ Q apply: a lambda: λx.A[x]
Definitions occuring in definition :  transitive-reflexive-closure: R^* lambda: λx.A[x] or: P ∨ Q apply: a
FDL editor aliases :  least-equiv

Latex:
least-equiv(A;R)  ==    \mlambda{}x,y.  ((R  x  y)  \mvee{}  (R  y  x))\^{}*



Date html generated: 2018_05_21-PM-00_51_45
Last ObjectModification: 2018_01_08-AM-01_04_30

Theory : relations2


Home Index