Nuprl Lemma : rel-plus-implies-rel-star
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  ((x R+ y) ⇒ (x (R^*) y))
Proof
Definitions occuring in Statement : 
rel_plus: R+, 
rel_star: R^*, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
infix_ap: x f y, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
infix_ap: x f y, 
subtype_rel: A ⊆r B, 
prop: ℙ
Lemmas referenced : 
rel-star-iff-rel-plus-or, 
rel_plus_wf, 
subtype_rel_self, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
Error :inlFormation_alt, 
hypothesis, 
Error :equalityIstype, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :universeIsType, 
applyEquality, 
functionExtensionality, 
sqequalRule, 
instantiate, 
functionEquality, 
cumulativity, 
universeEquality, 
Error :functionIsType
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    ((x  R\msupplus{}  y)  {}\mRightarrow{}  (x  rel\_star(T;  R)  y))
Date html generated:
2019_06_20-PM-02_01_52
Last ObjectModification:
2019_03_28-PM-03_10_09
Theory : relations2
Home
Index