Nuprl Lemma : rel-plus-implies-rel-star

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  ((x R+ y)  (x (R^*) y))


Proof




Definitions occuring in Statement :  rel_plus: R+ rel_star: R^* uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q infix_ap: y subtype_rel: A ⊆B prop:
Lemmas referenced :  rel-star-iff-rel-plus-or rel_plus_wf subtype_rel_self istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination productElimination independent_functionElimination Error :inlFormation_alt,  hypothesis Error :equalityIstype,  Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  applyEquality functionExtensionality sqequalRule instantiate functionEquality cumulativity universeEquality Error :functionIsType

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    ((x  R\msupplus{}  y)  {}\mRightarrow{}  (x  rel\_star(T;  R)  y))



Date html generated: 2019_06_20-PM-02_01_52
Last ObjectModification: 2019_03_28-PM-03_10_09

Theory : relations2


Home Index