Nuprl Lemma : rel_or-restriction
∀[T:Type]. ∀[P,Q:T ⟶ ℙ]. ∀[R:T ⟶ T ⟶ ℙ].  R|P ∨ R|Q => R|P ∨ Q
Proof
Definitions occuring in Statement : 
rel-restriction: R|P
, 
predicate_or: P1 ∨ P2
, 
rel_or: R1 ∨ R2
, 
rel_implies: R1 => R2
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
predicate_or: P1 ∨ P2
, 
rel-restriction: R|P
, 
rel_or: R1 ∨ R2
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
or_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
productElimination, 
hypothesis, 
independent_pairFormation, 
inlFormation, 
applyEquality, 
hypothesisEquality, 
inrFormation, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P,Q:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    R|P  \mvee{}  R|Q  =>  R|P  \mvee{}  Q
Date html generated:
2016_05_14-PM-03_56_13
Last ObjectModification:
2015_12_26-PM-06_55_30
Theory : relations2
Home
Index