Nuprl Lemma : decidable__less_than'
∀i,j:ℤ. Dec(less_than'(i;j))
Proof
Definitions occuring in Statement :
less_than': less_than'(a;b)
,
decidable: Dec(P)
,
all: ∀x:A. B[x]
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
less_than': less_than'(a;b)
,
decidable: Dec(P)
,
not: ¬A
,
or: P ∨ Q
,
true: True
,
implies: P
⇒ Q
,
prop: ℙ
,
false: False
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
true_wf,
false_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
introduction,
lessCases,
hypothesisEquality,
intEquality,
thin,
baseClosed,
inlEquality,
sqequalRule,
axiomEquality,
natural_numberEquality,
functionEquality,
cut,
extract_by_obid,
sqequalHypSubstitution,
hypothesis,
inrEquality,
lambdaEquality,
voidElimination,
because_Cache,
isectElimination
Latex:
\mforall{}i,j:\mBbbZ{}. Dec(less\_than'(i;j))
Date html generated:
2019_06_20-AM-11_19_44
Last ObjectModification:
2018_08_04-PM-01_52_40
Theory : sqequal_1
Home
Index