Nuprl Lemma : sqequal_zero
∀[x,y:Top].  (x ~0 y)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
natural_number: $n
, 
sqequal_n: s ~n t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalZero, 
Error :axiomSqequalN, 
hypothesis, 
Error :inhabitedIsType, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
extract_by_obid
Latex:
\mforall{}[x,y:Top].    (x  \msim{}0  y)
Date html generated:
2019_06_20-AM-11_19_41
Last ObjectModification:
2018_10_15-AM-09_58_58
Theory : sqequal_1
Home
Index