Nuprl Lemma : ext-eq_wf

[A,B:Type].  (A ≡ B ∈ ℙ)


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  ext-eq: A ≡ B uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  and_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:Type].    (A  \mequiv{}  B  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_19_04
Last ObjectModification: 2015_12_26-AM-09_07_57

Theory : subtype_0


Home Index