Nuprl Lemma : ext-eq_wf
∀[A,B:Type].  (A ≡ B ∈ ℙ)
Proof
Definitions occuring in Statement : 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
and_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,B:Type].    (A  \mequiv{}  B  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_19_04
Last ObjectModification:
2015_12_26-AM-09_07_57
Theory : subtype_0
Home
Index