Nuprl Lemma : continuous-constant

[G:Type]. Continuous+(T.G)


Proof




Definitions occuring in Statement :  strong-type-continuous: Continuous+(T.F[T]) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat:
Lemmas referenced :  nat_wf false_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  hypothesisEquality Error :universeIsType,  extract_by_obid hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality Error :functionIsType,  Error :inhabitedIsType,  isectElimination universeEquality isectEquality equalitySymmetry equalityTransitivity rename lemma_by_obid lambdaFormation natural_numberEquality dependent_set_memberEquality lambdaEquality

Latex:
\mforall{}[G:Type].  Continuous+(T.G)



Date html generated: 2019_06_20-PM-00_27_46
Last ObjectModification: 2018_09_29-PM-09_27_25

Theory : subtype_1


Home Index