Nuprl Lemma : continuous-constant
∀[G:Type]. Continuous+(T.G)
Proof
Definitions occuring in Statement : 
strong-type-continuous: Continuous+(T.F[T]), 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
nat: ℕ
Lemmas referenced : 
nat_wf, 
false_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
hypothesisEquality, 
Error :universeIsType, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
Error :functionIsType, 
Error :inhabitedIsType, 
isectElimination, 
universeEquality, 
isectEquality, 
equalitySymmetry, 
equalityTransitivity, 
rename, 
lemma_by_obid, 
lambdaFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
lambdaEquality
Latex:
\mforall{}[G:Type].  Continuous+(T.G)
Date html generated:
2019_06_20-PM-00_27_46
Last ObjectModification:
2018_09_29-PM-09_27_25
Theory : subtype_1
Home
Index