Nuprl Lemma : mono_wf

[T:Type]. (mono(T) ∈ ℙ)


Proof




Definitions occuring in Statement :  mono: mono(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mono: mono(T) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf base_wf is-above_wf equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeEquality hypothesisEquality lemma_by_obid isectElimination thin lambdaEquality functionEquality cumulativity because_Cache

Latex:
\mforall{}[T:Type].  (mono(T)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-04_13_21
Last ObjectModification: 2015_12_26-AM-11_11_07

Theory : subtype_1


Home Index