Nuprl Lemma : mono_wf
∀[T:Type]. (mono(T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
mono: mono(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mono: mono(T)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
base_wf, 
is-above_wf, 
equal-wf-T-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
lambdaEquality, 
functionEquality, 
cumulativity, 
because_Cache
Latex:
\mforall{}[T:Type].  (mono(T)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-04_13_21
Last ObjectModification:
2015_12_26-AM-11_11_07
Theory : subtype_1
Home
Index