Nuprl Lemma : strong-subtype-void
∀[T:Type]. strong-subtype(Void;T)
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uall: ∀[x:A]. B[x]
, 
void: Void
, 
universe: Type
Definitions unfolded in proof : 
strong-subtype: strong-subtype(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
exists_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
hypothesis, 
setEquality, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
universeEquality, 
setElimination, 
rename
Latex:
\mforall{}[T:Type].  strong-subtype(Void;T)
Date html generated:
2016_05_13-PM-04_11_09
Last ObjectModification:
2015_12_26-AM-11_21_37
Theory : subtype_1
Home
Index