Nuprl Lemma : strong-subtype-void

[T:Type]. strong-subtype(Void;T)


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uall: [x:A]. B[x] void: Void universe: Type
Definitions unfolded in proof :  strong-subtype: strong-subtype(A;B) uall: [x:A]. B[x] member: t ∈ T cand: c∧ B subtype_rel: A ⊆B guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop:
Lemmas referenced :  exists_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality voidElimination voidEquality independent_pairFormation hypothesis setEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality because_Cache productElimination independent_pairEquality axiomEquality universeEquality setElimination rename

Latex:
\mforall{}[T:Type].  strong-subtype(Void;T)



Date html generated: 2016_05_13-PM-04_11_09
Last ObjectModification: 2015_12_26-AM-11_21_37

Theory : subtype_1


Home Index