Nuprl Lemma : strong-subtype_wf

[A,B:Type].  (strong-subtype(A;B) ∈ ℙ)


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  strong-subtype: strong-subtype(A;B) uall: [x:A]. B[x] member: t ∈ T cand: c∧ B prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  subtype_rel_wf exists_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setEquality lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:Type].    (strong-subtype(A;B)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-04_10_52
Last ObjectModification: 2015_12_26-AM-11_21_44

Theory : subtype_1


Home Index