Nuprl Lemma : type-continuous_wf

[F:Type ⟶ Type]. (Continuous(t.F[t]) ∈ ℙ')


Proof




Definitions occuring in Statement :  type-continuous: Continuous(T.F[T]) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-continuous: Continuous(T.F[T]) so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  uall_wf nat_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesis universeEquality lambdaEquality isectEquality applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (Continuous(t.F[t])  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_13-PM-04_09_35
Last ObjectModification: 2015_12_26-AM-11_22_43

Theory : subtype_1


Home Index