Nuprl Lemma : alpha-eq-terms_transitivity
∀[opr:Type]. ∀a,b,c:term(opr).  (alpha-eq-terms(opr;a;b) ⇒ alpha-eq-terms(opr;b;c) ⇒ alpha-eq-terms(opr;a;c))
Proof
Definitions occuring in Statement : 
alpha-eq-terms: alpha-eq-terms(opr;a;b), 
term: term(opr), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
guard: {T}, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
alpha-eq-equiv-rel, 
alpha-eq-terms_wf, 
term_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
lambdaFormation_alt, 
universeIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[opr:Type]
    \mforall{}a,b,c:term(opr).    (alpha-eq-terms(opr;a;b)  {}\mRightarrow{}  alpha-eq-terms(opr;b;c)  {}\mRightarrow{}  alpha-eq-terms(opr;a;c))
Date html generated:
2020_05_19-PM-09_55_41
Last ObjectModification:
2020_03_09-PM-04_09_01
Theory : terms
Home
Index