Nuprl Lemma : alpha-eq-terms_transitivity
∀[opr:Type]. ∀a,b,c:term(opr). (alpha-eq-terms(opr;a;b)
⇒ alpha-eq-terms(opr;b;c)
⇒ alpha-eq-terms(opr;a;c))
Proof
Definitions occuring in Statement :
alpha-eq-terms: alpha-eq-terms(opr;a;b)
,
term: term(opr)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
guard: {T}
,
trans: Trans(T;x,y.E[x; y])
Lemmas referenced :
alpha-eq-equiv-rel,
alpha-eq-terms_wf,
term_wf,
istype-universe
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
productElimination,
lambdaFormation_alt,
universeIsType,
inhabitedIsType,
instantiate,
universeEquality,
dependent_functionElimination,
independent_functionElimination
Latex:
\mforall{}[opr:Type]
\mforall{}a,b,c:term(opr). (alpha-eq-terms(opr;a;b) {}\mRightarrow{} alpha-eq-terms(opr;b;c) {}\mRightarrow{} alpha-eq-terms(opr;a;c))
Date html generated:
2020_05_19-PM-09_55_41
Last ObjectModification:
2020_03_09-PM-04_09_01
Theory : terms
Home
Index