Nuprl Definition : correct-sort-arity
correct-sort-arity(sort;arity;t) ==
  (¬↑isvarterm(t))
  ⇒ let bts = term-bts(t) in
      let f = term-opr(t) in
      (||bts|| = ||arity f|| ∈ ℤ)
      ∧ (∀i:ℕ||bts||. ((||fst(bts[i])|| = (fst(arity f[i])) ∈ ℤ) ∧ ((sort (snd(bts[i]))) = (snd(arity f[i])) ∈ ℤ)))
Definitions occuring in Statement : 
term-bts: term-bts(t), 
term-opr: term-opr(t), 
isvarterm: isvarterm(t), 
select: L[n], 
length: ||as||, 
int_seg: {i..j-}, 
assert: ↑b, 
let: let, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions occuring in definition : 
implies: P ⇒ Q, 
not: ¬A, 
assert: ↑b, 
isvarterm: isvarterm(t), 
term-bts: term-bts(t), 
let: let, 
term-opr: term-opr(t), 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
natural_number: $n, 
and: P ∧ Q, 
length: ||as||, 
pi1: fst(t), 
equal: s = t ∈ T, 
int: ℤ, 
pi2: snd(t), 
select: L[n], 
apply: f a
FDL editor aliases : 
correct-sort-arity
Latex:
correct-sort-arity(sort;arity;t)  ==
    (\mneg{}\muparrow{}isvarterm(t))
    {}\mRightarrow{}  let  bts  =  term-bts(t)  in
            let  f  =  term-opr(t)  in
            (||bts||  =  ||arity  f||)
            \mwedge{}  (\mforall{}i:\mBbbN{}||bts||
                      ((||fst(bts[i])||  =  (fst(arity  f[i])))  \mwedge{}  ((sort  (snd(bts[i])))  =  (snd(arity  f[i])))))
Date html generated:
2020_05_19-PM-09_58_08
Last ObjectModification:
2020_03_11-PM-03_52_14
Theory : terms
Home
Index