Nuprl Lemma : assert_wf
∀[b:𝔹]. (↑b ∈ ℙ)
Proof
Definitions occuring in Statement : 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
assert: ↑b, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff
Lemmas referenced : 
true_wf, 
false_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
extract_by_obid, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType
Latex:
\mforall{}[b:\mBbbB{}].  (\muparrow{}b  \mmember{}  \mBbbP{})
 Date html generated: 
2019_06_20-AM-11_19_55
 Last ObjectModification: 
2018_09_26-AM-10_50_27
Theory : union
Home
Index