Nuprl Lemma : bnot_wf
∀[b:𝔹]. (¬bb ∈ 𝔹)
Proof
Definitions occuring in Statement :
bnot: ¬bb
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
bfalse: ff
Lemmas referenced :
bfalse_wf,
btrue_wf,
bool_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalHypSubstitution,
unionElimination,
thin,
equalityElimination,
sqequalRule,
extract_by_obid,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
Error :universeIsType
Latex:
\mforall{}[b:\mBbbB{}]. (\mneg{}\msubb{}b \mmember{} \mBbbB{})
Date html generated:
2019_06_20-AM-11_19_56
Last ObjectModification:
2018_09_26-AM-10_50_27
Theory : union
Home
Index