Nuprl Lemma : not-btrue-sqeq-bfalse
¬(ff ~ tt)
Proof
Definitions occuring in Statement : 
bfalse: ff
, 
btrue: tt
, 
not: ¬A
, 
sqequal: s ~ t
Definitions unfolded in proof : 
btrue: tt
, 
bfalse: ff
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
false_wf, 
not_zero_sqequal_one, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
voidElimination, 
lemma_by_obid, 
hypothesis, 
addLevel, 
independent_functionElimination, 
thin, 
sqequalRule, 
sqequalIntensionalEquality, 
isectElimination
Latex:
\mneg{}(ff  \msim{}  tt)
Date html generated:
2016_05_13-PM-03_20_35
Last ObjectModification:
2015_12_26-AM-09_10_46
Theory : union
Home
Index