Nuprl Lemma : not-btrue-sqeq-bfalse

¬(ff tt)


Proof




Definitions occuring in Statement :  bfalse: ff btrue: tt not: ¬A sqequal: t
Definitions unfolded in proof :  btrue: tt bfalse: ff not: ¬A implies:  Q false: False member: t ∈ T prop: uall: [x:A]. B[x]
Lemmas referenced :  false_wf not_zero_sqequal_one not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lambdaFormation sqequalHypSubstitution voidElimination lemma_by_obid hypothesis addLevel independent_functionElimination thin sqequalRule sqequalIntensionalEquality isectElimination

Latex:
\mneg{}(ff  \msim{}  tt)



Date html generated: 2016_05_13-PM-03_20_35
Last ObjectModification: 2015_12_26-AM-09_10_46

Theory : union


Home Index