Nuprl Lemma : inv_image_ind_a
∀[T:Type]. ∀[r:T ⟶ T ⟶ ℙ]. ∀[S:Type].  ∀f:S ⟶ T. (WellFnd{i}(T;x,y.r[x;y]) ⇒ WellFnd{i}(S;x,y.r[f x;f y]))
Proof
Definitions occuring in Statement : 
wellfounded: WellFnd{i}(A;x,y.R[x; y]), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
wellfounded: WellFnd{i}(A;x,y.R[x; y]), 
guard: {T}, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
wellfounded_wf, 
all_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[S:Type].
    \mforall{}f:S  {}\mrightarrow{}  T.  (WellFnd\{i\}(T;x,y.r[x;y])  {}\mRightarrow{}  WellFnd\{i\}(S;x,y.r[f  x;f  y]))
Date html generated:
2019_06_20-AM-11_19_12
Last ObjectModification:
2018_09_26-AM-10_41_44
Theory : well_fnd
Home
Index