Nuprl Lemma : bag-disjoint_wf

[T:Type]. ∀[as,bs:bag(T)].  (bag-disjoint(T;as;bs) ∈ ℙ)


Proof




Definitions occuring in Statement :  bag-disjoint: bag-disjoint(T;as;bs) bag: bag(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-disjoint: bag-disjoint(T;as;bs) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf not_wf and_wf bag-member_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].    (bag-disjoint(T;as;bs)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-02_44_18
Last ObjectModification: 2015_12_27-AM-09_38_29

Theory : bags


Home Index