Nuprl Lemma : bag-disjoint_wf
∀[T:Type]. ∀[as,bs:bag(T)].  (bag-disjoint(T;as;bs) ∈ ℙ)
Proof
Definitions occuring in Statement : 
bag-disjoint: bag-disjoint(T;as;bs)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-disjoint: bag-disjoint(T;as;bs)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
not_wf, 
and_wf, 
bag-member_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].    (bag-disjoint(T;as;bs)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-02_44_18
Last ObjectModification:
2015_12_27-AM-09_38_29
Theory : bags
Home
Index