Nuprl Lemma : bag-filter-map
∀[f,p,as:Top].  ([x∈bag-map(f;as)|p[x]] ~ bag-map(f;[x∈as|p[f x]]))
Proof
Definitions occuring in Statement : 
bag-filter: [x∈b|p[x]]
, 
bag-map: bag-map(f;bs)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-filter: [x∈b|p[x]]
, 
bag-map: bag-map(f;bs)
, 
top: Top
, 
compose: f o g
Lemmas referenced : 
filter-map, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[f,p,as:Top].    ([x\mmember{}bag-map(f;as)|p[x]]  \msim{}  bag-map(f;[x\mmember{}as|p[f  x]]))
Date html generated:
2016_05_15-PM-02_23_20
Last ObjectModification:
2015_12_27-AM-09_54_17
Theory : bags
Home
Index