Nuprl Lemma : bag-summation-empty

[add,zero,f:Top].  (x∈{}). f[x] zero)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] empty-bag: {} uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  empty-bag: {} bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) all: x:A. B[x] member: t ∈ T top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uall: [x:A]. B[x]
Lemmas referenced :  list_accum_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[add,zero,f:Top].    (\mSigma{}(x\mmember{}\{\}).  f[x]  \msim{}  zero)



Date html generated: 2016_05_15-PM-02_30_56
Last ObjectModification: 2015_12_27-AM-09_48_28

Theory : bags


Home Index