Nuprl Lemma : bag-summation-single-sq

[add,zero,f,a:Top].  (x∈{a}). f[x] add f[a] zero)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] single-bag: {x} uall: [x:A]. B[x] top: Top so_apply: x[s] apply: a sqequal: t
Definitions unfolded in proof :  single-bag: {x} bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) all: x:A. B[x] member: t ∈ T top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uall: [x:A]. B[x]
Lemmas referenced :  list_accum_cons_lemma istype-void list_accum_nil_lemma istype-top
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis isect_memberFormation_alt axiomSqEquality inhabitedIsType hypothesisEquality isectElimination isectIsTypeImplies

Latex:
\mforall{}[add,zero,f,a:Top].    (\mSigma{}(x\mmember{}\{a\}).  f[x]  \msim{}  add  f[a]  zero)



Date html generated: 2019_10_15-AM-11_00_38
Last ObjectModification: 2019_08_13-PM-00_00_52

Theory : bags


Home Index