Nuprl Lemma : bag-val-empty
∀[+,zero:Top].  (bag-val(zero;+) {} ~ zero)
Proof
Definitions occuring in Statement : 
bag-val: bag-val(zero;+), 
empty-bag: {}, 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
sqequal: s ~ t
Definitions unfolded in proof : 
empty-bag: {}, 
bag-val: bag-val(zero;+), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
list_accum_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[+,zero:Top].    (bag-val(zero;+)  \{\}  \msim{}  zero)
 Date html generated: 
2016_05_15-PM-02_26_34
 Last ObjectModification: 
2015_12_27-AM-09_52_02
Theory : bags
Home
Index