Nuprl Lemma : maximal-sub-bag_wf
∀[T:Type]. ∀[b,m:bag(T)]. ∀[P:bag(T) ⟶ ℙ].  (maximal-sub-bag(T;m;b;s.P[s]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
maximal-sub-bag: maximal-sub-bag(T;m;b;s.P[s])
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
maximal-sub-bag: maximal-sub-bag(T;m;b;s.P[s])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
sub-bag_wf, 
bag_wf, 
all_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
universeEquality, 
functionExtensionality, 
applyEquality, 
functionEquality, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[b,m:bag(T)].  \mforall{}[P:bag(T)  {}\mrightarrow{}  \mBbbP{}].    (maximal-sub-bag(T;m;b;s.P[s])  \mmember{}  \mBbbP{})
Date html generated:
2018_05_21-PM-06_24_43
Last ObjectModification:
2018_01_08-AM-00_34_54
Theory : bags
Home
Index