Nuprl Lemma : maximal-sub-bag_wf

[T:Type]. ∀[b,m:bag(T)]. ∀[P:bag(T) ⟶ ℙ].  (maximal-sub-bag(T;m;b;s.P[s]) ∈ ℙ)


Proof




Definitions occuring in Statement :  maximal-sub-bag: maximal-sub-bag(T;m;b;s.P[s]) bag: bag(T) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  subtype_rel: A ⊆B all: x:A. B[x] so_apply: x[s] implies:  Q so_lambda: λ2x.t[x] and: P ∧ Q prop: maximal-sub-bag: maximal-sub-bag(T;m;b;s.P[s]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  sub-bag_wf bag_wf all_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality universeEquality functionExtensionality applyEquality functionEquality lambdaEquality hypothesis hypothesisEquality cumulativity thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[b,m:bag(T)].  \mforall{}[P:bag(T)  {}\mrightarrow{}  \mBbbP{}].    (maximal-sub-bag(T;m;b;s.P[s])  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-06_24_43
Last ObjectModification: 2018_01_08-AM-00_34_54

Theory : bags


Home Index