Nuprl Lemma : add-wf-bar-nat
∀[x,y:bar(ℕ)].  (x + y ∈ bar(ℕ))
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
add: n + m
Definitions unfolded in proof : 
bar: bar(T)
Lemmas referenced : 
add-wf-partial-nat
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesis
Latex:
\mforall{}[x,y:bar(\mBbbN{})].    (x  +  y  \mmember{}  bar(\mBbbN{}))
Date html generated:
2016_07_08-PM-05_18_58
Last ObjectModification:
2016_01_06-AM-00_35_54
Theory : bar!type
Home
Index