Nuprl Lemma : Russell_wf
Russell ∈ 𝕌'
Proof
Definitions occuring in Statement :
Russell: Russell
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
Russell: Russell
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
subtype_rel: A ⊆r B
Lemmas referenced :
isect2_wf,
base_wf,
not_wf,
isect2_subtype_rel,
isect2_subtype_rel2,
equal-wf-base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
setEquality,
cut,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
universeEquality,
cumulativity,
hypothesis,
sqequalRule,
hypothesisEquality,
applyEquality,
because_Cache
Latex:
Russell \mmember{} \mBbbU{}'
Date html generated:
2016_05_15-PM-01_43_52
Last ObjectModification:
2015_12_27-AM-00_10_54
Theory : basic
Home
Index