Nuprl Lemma : inl_eq_btrue
∀[x:Top]. ((inl x) = tt ∈ Decision)
Proof
Definitions occuring in Statement :
decision: Decision
,
btrue: tt
,
uall: ∀[x:A]. B[x]
,
top: Top
,
inl: inl x
,
equal: s = t ∈ T
Definitions unfolded in proof :
btrue: tt
,
decision: Decision
,
uall: ∀[x:A]. B[x]
,
top: Top
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
inlEquality,
isect_memberEquality,
voidElimination,
voidEquality,
introduction,
extract_by_obid,
hypothesis,
universeIsType
Latex:
\mforall{}[x:Top]. ((inl x) = tt)
Date html generated:
2019_10_15-AM-10_46_53
Last ObjectModification:
2018_09_27-AM-09_35_30
Theory : basic
Home
Index