Nuprl Lemma : inr_eq_bfalse
∀[x:Top]. ((inr x ) = ff ∈ Decision)
Proof
Definitions occuring in Statement :
decision: Decision
,
bfalse: ff
,
uall: ∀[x:A]. B[x]
,
top: Top
,
inr: inr x
,
equal: s = t ∈ T
Definitions unfolded in proof :
bfalse: ff
,
decision: Decision
,
uall: ∀[x:A]. B[x]
,
top: Top
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
inrEquality,
isect_memberEquality,
voidElimination,
voidEquality,
introduction,
extract_by_obid,
hypothesis,
universeIsType
Latex:
\mforall{}[x:Top]. ((inr x ) = ff)
Date html generated:
2019_10_15-AM-10_46_51
Last ObjectModification:
2018_09_27-AM-09_35_32
Theory : basic
Home
Index