Nuprl Lemma : p-selector_wf

[T:Type]. ∀[x:T]. ∀[p:T ⟶ 𝔹].  (p-selector(T;x;p) ∈ ℙ)


Proof




Definitions occuring in Statement :  p-selector: p-selector(T;x;p) bool: 𝔹 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-selector: p-selector(T;x;p) implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf equal_wf bool_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].    (p-selector(T;x;p)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-01_45_34
Last ObjectModification: 2015_12_27-AM-00_10_16

Theory : basic


Home Index