Nuprl Lemma : p-selector_wf
∀[T:Type]. ∀[x:T]. ∀[p:T ⟶ 𝔹].  (p-selector(T;x;p) ∈ ℙ)
Proof
Definitions occuring in Statement : 
p-selector: p-selector(T;x;p)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
p-selector: p-selector(T;x;p)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
equal_wf, 
bool_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].    (p-selector(T;x;p)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-01_45_34
Last ObjectModification:
2015_12_27-AM-00_10_16
Theory : basic
Home
Index