Nuprl Lemma : iPO_wf
∀[K:dl_KripkeStructure]. ∀[s,t:worlds(K)].  (iPO(K;s;t) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dl_KripkeStructure: dl_KripkeStructure, 
iPO: iPO(k;s;t), 
worlds: worlds(k), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dl_KripkeStructure: dl_KripkeStructure, 
worlds: worlds(k), 
record+: record+, 
record-select: r.x, 
subtype_rel: A ⊆r B, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
iPO: iPO(k;s;t)
Lemmas referenced : 
subtype_rel_self, 
record-select_wf, 
top_wf, 
istype-atom, 
nat_wf, 
worlds_wf, 
dl_KripkeStructure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
instantiate, 
extract_by_obid, 
isectElimination, 
universeEquality, 
functionEquality, 
cumulativity, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
axiomEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[K:dl\_KripkeStructure].  \mforall{}[s,t:worlds(K)].    (iPO(K;s;t)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-09_01_14
Last ObjectModification:
2019_11_27-PM-02_15_13
Theory : dynamic!logic
Home
Index