Nuprl Lemma : bl-exists-singleton

[T:Type]. ∀[f:T ⟶ 𝔹]. ∀[a:T].  ((∃x∈[a].f[x])_b f[a])


Proof




Definitions occuring in Statement :  bl-exists: (∃x∈L.P[x])_b cons: [a b] nil: [] bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  bl-exists: (∃x∈L.P[x])_b all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] so_apply: x[s]
Lemmas referenced :  reduce_cons_lemma reduce_nil_lemma bor-bfalse bool_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction isectElimination applyEquality hypothesisEquality sqequalAxiom because_Cache functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[a:T].    ((\mexists{}x\mmember{}[a].f[x])\_b  \msim{}  f[a])



Date html generated: 2016_05_15-PM-05_37_29
Last ObjectModification: 2015_12_27-PM-02_05_36

Theory : general


Home Index