Nuprl Lemma : bl-exists-singleton
∀[T:Type]. ∀[f:T ⟶ 𝔹]. ∀[a:T].  ((∃x∈[a].f[x])_b ~ f[a])
Proof
Definitions occuring in Statement : 
bl-exists: (∃x∈L.P[x])_b
, 
cons: [a / b]
, 
nil: []
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bl-exists: (∃x∈L.P[x])_b
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
Lemmas referenced : 
reduce_cons_lemma, 
reduce_nil_lemma, 
bor-bfalse, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
sqequalAxiom, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[a:T].    ((\mexists{}x\mmember{}[a].f[x])\_b  \msim{}  f[a])
Date html generated:
2016_05_15-PM-05_37_29
Last ObjectModification:
2015_12_27-PM-02_05_36
Theory : general
Home
Index