Nuprl Lemma : bool-to-dcdr-aux
∀[A:Type]. ∀f:A ⟶ 𝔹. ∀x:A.  Dec(f x = tt)
Proof
Definitions occuring in Statement : 
btrue: tt
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
decidable__equal_bool, 
btrue_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}f:A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}x:A.    Dec(f  x  =  tt)
Date html generated:
2016_05_15-PM-03_27_45
Last ObjectModification:
2015_12_27-PM-01_08_46
Theory : general
Home
Index