Nuprl Lemma : bool-to-dcdr-aux

[A:Type]. ∀f:A ⟶ 𝔹. ∀x:A.  Dec(f tt)


Proof




Definitions occuring in Statement :  btrue: tt bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T
Lemmas referenced :  decidable__equal_bool btrue_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin applyEquality hypothesisEquality hypothesis functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}f:A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}x:A.    Dec(f  x  =  tt)



Date html generated: 2016_05_15-PM-03_27_45
Last ObjectModification: 2015_12_27-PM-01_08_46

Theory : general


Home Index