Nuprl Lemma : church_null_pair_lemma
∀y,x:Top.  (church-null() (church-pair() x y) ~ church-false())
Proof
Definitions occuring in Statement : 
church-null: church-null()
, 
church-pair: church-pair()
, 
church-false: church-false()
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
church-null: church-null()
, 
church-pair: church-pair()
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}y,x:Top.    (church-null()  (church-pair()  x  y)  \msim{}  church-false())
Date html generated:
2016_05_15-PM-03_22_51
Last ObjectModification:
2015_12_27-PM-01_05_18
Theory : general
Home
Index