Nuprl Lemma : compat_symmetry
∀[T:Type]. ∀as,bs:T List.  (as || bs ⇐⇒ bs || as)
Proof
Definitions occuring in Statement : 
compat: l1 || l2, 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type
Definitions unfolded in proof : 
compat: l1 || l2, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
or: P ∨ Q, 
guard: {T}, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
iseg_wf, 
or_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
cut, 
hypothesis, 
inrFormation, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
inlFormation, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.    (as  ||  bs  \mLeftarrow{}{}\mRightarrow{}  bs  ||  as)
Date html generated:
2016_05_15-PM-03_50_11
Last ObjectModification:
2015_12_27-PM-01_23_18
Theory : general
Home
Index