Nuprl Lemma : listid_cons_lemma

y,x:Top.  (listid([x y]) [x listid(y)])


Proof




Definitions occuring in Statement :  listid: listid(L) cons: [a b] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T listid: listid(L) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}y,x:Top.    (listid([x  /  y])  \msim{}  [x  /  listid(y)])



Date html generated: 2016_05_15-PM-03_36_34
Last ObjectModification: 2015_12_27-PM-01_14_44

Theory : general


Home Index