Nuprl Lemma : llex-le-lin-order

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  ((∀a:A. (¬<[a;a]))
   Trans(A;a,b.<[a;b])
   (∀a,b:A.  (<[a;b] ∨ (a b ∈ A) ∨ <[b;a]))
   Linorder(A List;as,bs.as llex-le(A;a,b.<[a;b]) bs))


Proof




Definitions occuring in Statement :  llex-le: llex-le(A;a,b.<[a; b]) list: List linorder: Linorder(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q linorder: Linorder(T;x,y.R[x; y]) and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] so_lambda: λ2y.t[x; y] all: x:A. B[x] connex: Connex(T;x,y.R[x; y]) llex-le: llex-le(A;a,b.<[a; b]) infix_ap: y or: P ∨ Q guard: {T}
Lemmas referenced :  llex-le-order all_wf or_wf equal_wf trans_wf not_wf list_wf llex-linear llex_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination independent_pairFormation cumulativity sqequalRule lambdaEquality applyEquality functionExtensionality functionEquality because_Cache universeEquality dependent_functionElimination unionElimination inlFormation inrFormation

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  (\mneg{}<[a;a]))
    {}\mRightarrow{}  Trans(A;a,b.<[a;b])
    {}\mRightarrow{}  (\mforall{}a,b:A.    (<[a;b]  \mvee{}  (a  =  b)  \mvee{}  <[b;a]))
    {}\mRightarrow{}  Linorder(A  List;as,bs.as  llex-le(A;a,b.<[a;b])  bs))



Date html generated: 2017_02_20-AM-10_55_52
Last ObjectModification: 2017_02_02-PM-09_43_50

Theory : general


Home Index