Nuprl Lemma : p-first-singleton
∀[A,B:Type]. ∀[f:A ⟶ (B + Top)].  (p-first([f]) = f ∈ (A ⟶ (B + Top)))
Proof
Definitions occuring in Statement : 
p-first: p-first(L)
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
p-first: p-first(L)
, 
list_accum: list_accum, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
unionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].    (p-first([f])  =  f)
Date html generated:
2016_05_15-PM-03_30_18
Last ObjectModification:
2015_12_27-PM-01_10_24
Theory : general
Home
Index