Nuprl Lemma : p-first-singleton

[A,B:Type]. ∀[f:A ⟶ (B Top)].  (p-first([f]) f ∈ (A ⟶ (B Top)))


Proof




Definitions occuring in Statement :  p-first: p-first(L) cons: [a b] nil: [] uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-first: p-first(L) list_accum: list_accum cons: [a b] nil: [] it:
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule hypothesis applyEquality hypothesisEquality functionEquality unionEquality lemma_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].    (p-first([f])  =  f)



Date html generated: 2016_05_15-PM-03_30_18
Last ObjectModification: 2015_12_27-PM-01_10_24

Theory : general


Home Index