Nuprl Lemma : page55
∀[U:Type]. ∀[P,Q:U ⟶ ℙ].  ((∀x:U. (P[x] 
⇒ Q[x])) 
⇒ (∀x:U. P[x]) 
⇒ (∀x:U. Q[x]))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
because_Cache, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[U:Type].  \mforall{}[P,Q:U  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:U.  (P[x]  {}\mRightarrow{}  Q[x]))  {}\mRightarrow{}  (\mforall{}x:U.  P[x])  {}\mRightarrow{}  (\mforall{}x:U.  Q[x]))
Date html generated:
2016_05_15-PM-07_42_03
Last ObjectModification:
2015_12_27-AM-11_13_36
Theory : general
Home
Index