Nuprl Lemma : page55

[U:Type]. ∀[P,Q:U ⟶ ℙ].  ((∀x:U. (P[x]  Q[x]))  (∀x:U. P[x])  (∀x:U. Q[x]))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation because_Cache functionEquality cumulativity hypothesisEquality universeEquality lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality hypothesis dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[U:Type].  \mforall{}[P,Q:U  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:U.  (P[x]  {}\mRightarrow{}  Q[x]))  {}\mRightarrow{}  (\mforall{}x:U.  P[x])  {}\mRightarrow{}  (\mforall{}x:U.  Q[x]))



Date html generated: 2016_05_15-PM-07_42_03
Last ObjectModification: 2015_12_27-AM-11_13_36

Theory : general


Home Index