Nuprl Lemma : prob2.3

[U:Type]. ∀[P,Q:U ⟶ ℙ].  (((∃x:U. (P x)) ∨ (∃x:U. (Q x)))  (∃x:U. ((P x) ∨ (Q x))))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: exists: x:A. B[x] implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q exists: x:A. B[x]
Lemmas referenced :  or_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality unionElimination productElimination dependent_pairFormation inlFormation inrFormation

Latex:
\mforall{}[U:Type].  \mforall{}[P,Q:U  {}\mrightarrow{}  \mBbbP{}].    (((\mexists{}x:U.  (P  x))  \mvee{}  (\mexists{}x:U.  (Q  x)))  {}\mRightarrow{}  (\mexists{}x:U.  ((P  x)  \mvee{}  (Q  x))))



Date html generated: 2016_05_15-PM-07_43_37
Last ObjectModification: 2015_12_27-AM-11_10_46

Theory : general


Home Index