Nuprl Lemma : proof-tree-ext
∀[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)].
  proof-tree(Sequent;Rule;effect) ≡ sr:Sequent × Rule × (case effect sr
                                                         of inl(subgoals) =>
                                                         ℕ||subgoals||
                                                         | inr(x) =>
                                                         Void ⟶ proof-tree(Sequent;Rule;effect))
Proof
Definitions occuring in Statement : 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
union: left + right
, 
natural_number: $n
, 
void: Void
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
W-ext, 
list_wf, 
unit_wf2, 
int_seg_wf, 
length_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
unionEquality, 
hypothesis, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
natural_numberEquality, 
voidEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].
    proof-tree(Sequent;Rule;effect)  \mequiv{}  sr:Sequent  \mtimes{}  Rule  \mtimes{}  (case  effect  sr
                                                                                                                  of  inl(subgoals)  =>
                                                                                                                  \mBbbN{}||subgoals||
                                                                                                                  |  inr(x)  =>
                                                                                                                  Void  {}\mrightarrow{}  proof-tree(Sequent;Rule;effect))
Date html generated:
2019_10_15-AM-11_06_10
Last ObjectModification:
2018_08_21-PM-01_57_53
Theory : general
Home
Index