Nuprl Lemma : proof-tree-ext

[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)].
  proof-tree(Sequent;Rule;effect) ≡ sr:Sequent × Rule × (case effect sr
                                                         of inl(subgoals) =>
                                                         ℕ||subgoals||
                                                         inr(x) =>
                                                         Void ⟶ proof-tree(Sequent;Rule;effect))


Proof




Definitions occuring in Statement :  proof-tree: proof-tree(Sequent;Rule;effect) length: ||as|| list: List int_seg: {i..j-} ext-eq: A ≡ B uall: [x:A]. B[x] unit: Unit apply: a function: x:A ⟶ B[x] product: x:A × B[x] decide: case of inl(x) => s[x] inr(y) => t[y] union: left right natural_number: $n void: Void universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q prop: so_apply: x[s] proof-tree: proof-tree(Sequent;Rule;effect) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  W-ext list_wf unit_wf2 int_seg_wf length_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality sqequalRule lambdaEquality applyEquality unionEquality hypothesis lambdaFormation equalityTransitivity equalitySymmetry unionElimination natural_numberEquality voidEquality dependent_functionElimination independent_functionElimination productElimination independent_pairEquality axiomEquality functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].
    proof-tree(Sequent;Rule;effect)  \mequiv{}  sr:Sequent  \mtimes{}  Rule  \mtimes{}  (case  effect  sr
                                                                                                                  of  inl(subgoals)  =>
                                                                                                                  \mBbbN{}||subgoals||
                                                                                                                  |  inr(x)  =>
                                                                                                                  Void  {}\mrightarrow{}  proof-tree(Sequent;Rule;effect))



Date html generated: 2019_10_15-AM-11_06_10
Last ObjectModification: 2018_08_21-PM-01_57_53

Theory : general


Home Index