Nuprl Lemma : record_wf
∀[T:Atom ⟶ 𝕌']. (record(x.T[x]) ∈ 𝕌')
Proof
Definitions occuring in Statement :
record: record(x.T[x])
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
atom: Atom
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
record: record(x.T[x])
,
so_apply: x[s]
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
functionEquality,
cumulativity,
atomEquality,
applyEquality,
hypothesisEquality,
sqequalHypSubstitution,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[T:Atom {}\mrightarrow{} \mBbbU{}']. (record(x.T[x]) \mmember{} \mBbbU{}')
Date html generated:
2016_05_15-PM-06_38_31
Last ObjectModification:
2015_12_27-AM-11_53_43
Theory : general
Home
Index