Nuprl Lemma : residue_wf
∀n:ℕ. (residue(n) ∈ Type)
Proof
Definitions occuring in Statement : 
residue: residue(n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
residue: residue(n)
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
prop: ℙ
Lemmas referenced : 
int_seg_wf, 
coprime_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}n:\mBbbN{}.  (residue(n)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-07_28_33
Last ObjectModification:
2015_12_27-AM-11_20_38
Theory : general
Home
Index