Nuprl Lemma : retraction_wf
∀[T:Type]. ∀[f:T ⟶ T].  (retraction(T;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
retraction: retraction(T;f)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
retraction: retraction(T;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
nat_wf, 
all_wf, 
or_wf, 
equal_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].    (retraction(T;f)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-05_05_31
Last ObjectModification:
2015_12_27-PM-02_26_35
Theory : general
Home
Index