Nuprl Lemma : retraction_wf

[T:Type]. ∀[f:T ⟶ T].  (retraction(T;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  retraction: retraction(T;f) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  retraction: retraction(T;f) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s]
Lemmas referenced :  exists_wf nat_wf all_wf or_wf equal_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality hypothesis lambdaEquality applyEquality setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].    (retraction(T;f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-05_05_31
Last ObjectModification: 2015_12_27-PM-02_26_35

Theory : general


Home Index