Nuprl Lemma : free-dlwc-meet
∀[T,eq,a,b,cs:Top]. (a ∧ b ~ glb(λs.fset-contains-none(eq;s;x.cs[x]);a;b))
Proof
Definitions occuring in Statement :
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
,
lattice-meet: a ∧ b
,
fset-constrained-ac-glb: glb(P;ac1;ac2)
,
fset-contains-none: fset-contains-none(eq;s;x.Cs[x])
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
lambda: λx.A[x]
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
,
lattice-meet: a ∧ b
,
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
,
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice,
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
,
all: ∀x:A. B[x]
,
top: Top
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
Lemmas referenced :
rec_select_update_lemma,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
axiomSqEquality,
isectElimination,
hypothesisEquality,
because_Cache
Latex:
\mforall{}[T,eq,a,b,cs:Top]. (a \mwedge{} b \msim{} glb(\mlambda{}s.fset-contains-none(eq;s;x.cs[x]);a;b))
Date html generated:
2020_05_20-AM-08_48_28
Last ObjectModification:
2015_12_28-PM-01_58_48
Theory : lattices
Home
Index