Nuprl Lemma : agree_on_common_cons

[T:Type]. ∀as,bs:T List. ∀x:T.  (agree_on_common(T;[x as];[x bs]) ⇐⇒ agree_on_common(T;as;bs))


Proof




Definitions occuring in Statement :  agree_on_common: agree_on_common(T;as;bs) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q agree_on_common: agree_on_common(T;as;bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] or: P ∨ Q not: ¬A false: False guard: {T} cand: c∧ B
Lemmas referenced :  agree_on_common_wf cons_wf list_wf list_ind_cons_lemma cons_member l_member_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeIsType universeEquality sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality unionElimination productElimination independent_functionElimination inlFormation inrFormation productEquality

Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.  \mforall{}x:T.    (agree\_on\_common(T;[x  /  as];[x  /  bs])  \mLeftarrow{}{}\mRightarrow{}  agree\_on\_common(T;as;bs))



Date html generated: 2019_10_15-AM-10_53_00
Last ObjectModification: 2018_09_27-AM-11_02_33

Theory : list!


Home Index