Nuprl Lemma : agree_on_common_cons
∀[T:Type]. ∀as,bs:T List. ∀x:T.  (agree_on_common(T;[x / as];[x / bs]) 
⇐⇒ agree_on_common(T;as;bs))
Proof
Definitions occuring in Statement : 
agree_on_common: agree_on_common(T;as;bs)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
agree_on_common: agree_on_common(T;as;bs)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
agree_on_common_wf, 
cons_wf, 
list_wf, 
list_ind_cons_lemma, 
cons_member, 
l_member_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
universeEquality, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
productElimination, 
independent_functionElimination, 
inlFormation, 
inrFormation, 
productEquality
Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.  \mforall{}x:T.    (agree\_on\_common(T;[x  /  as];[x  /  bs])  \mLeftarrow{}{}\mRightarrow{}  agree\_on\_common(T;as;bs))
Date html generated:
2019_10_15-AM-10_53_00
Last ObjectModification:
2018_09_27-AM-11_02_33
Theory : list!
Home
Index